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Abstract

Federated Learning (FL) is a distributed learning
paradigm that enables different parties to train a model
together for better quality and strong privacy protection.
In this scenario, individual participants may get compro-
mised and perform backdoor attacks by poisoning the data
(or gradients). Existing work on robust aggregation and
certified FL robustness does not study how hardening be-
nign clients can affect the global model (and the malicious
clients). In this work, we theoretically analyze the con-
nection among cross-entropy loss, attack success rate, and
clean accuracy in this setting. Moreover, we propose a trig-
ger reverse-engineering-based defense and show that our
method can provide a guaranteed robustness increase (i.e.,
lower the attack success rate) without affecting benign ac-
curacy. We conduct comprehensive experiments across dif-
ferent datasets and attack settings. Our results on eight
competing SOTA defenses show the empirical superiority
of our method on both single-shot and continuous FL back-
door attacks.

1. Introduction

Federated Learning (FL) is an emerging distributed
learning paradigm. However, due to the decentralized na-
ture of FL, recent studies demonstrate that individual par-
ticipants may be compromised and become susceptible to
backdoor attacks [2, 33, 38, 43] that aim to make any inputs
stamped with a backdoor pattern misclassified as a target
label. Such backdoors are becoming a prominent security
threat to the real-world deployment of federated learning.

Deficiencies of Existing Defenses. Existing FL backdoor
defense works mainly fall into two categories, robust aggre-
gation [10,31] which detects and rejects malicious weights,
and certified defense [7, 16, 30, 40] which provides robust-
ness certification on backdoors with limited magnitude. Al-
though there have been a lot of existing works on robust
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Figure 1. Overview of FLIP. The left upper part (red box) performs
the malicious client backdoor attack and the left lower part (green
box) illustrates the main steps of benign client model training.

aggregation and empirical FL robust certification, most of
them require inspecting model weights. This may cause
information leakage of local clients by model inversion
techniques. Besides, existing defense methods based on
weights clustering [3,28] either reject benign weights, caus-
ing degradation on mask task performance, or accept mali-
cious weights, leaving backdoor effective.

FLIP. In this paper, we propose a Federated LearnIng
Provable defense framework (FLIP) equipped with a theo-
retical guarantee. For each benign local client, FLIP adver-
sarially trains the local model on generated backdoor trig-
gers that can cause misclassification, which is contradict to
malicious local clients poisoning. Once local weights are
aggregated in the global server, the injected backdoor fea-
tures in aggregated global model will be mitigated by the
benign clients’ hardening. Therefore, FLIP can reduce the
prediction confidence for backdoor samples from high to
low. The overview of FLIP is shown in Figure 1. On top
of the framework, we provide a theoretical analysis of how
our training on a benign client can affect a malicious local
client as well as the global model, which has not been stud-
ied in the literature. Certified accuracy is commonly used
in evasion attacks that do not involve training. As back-
door attacks are training-time attacks, it is more reasonable
to certify the behavior of models during training rather than
the accuracy, which is the focus of our theoretical analysis.
Our Contributions. We make contributions on both theo-



retical and empirical fronts.

• We propose FLIP, a new provable defense framework
that can provide a sufficient condition on the quality of
trigger recovery such that the proposed defense is prov-
ably effective in mitigating backdoor attacks.

• We present a new theoretical understanding on formally
quantifying the loss changes (with defense and without
defense) in both backdoor and clean data evaluation.

• We empirically evaluate the effectiveness of our frame-
work at scale across MNIST, Fashion-MNIST and
CIFAR-10, trained with non-linear neural networks. The
results significantly outperform prior works on the SOTA
continuous FL backdoor attack setting. ASRs of SOTA
defense techniques remain at 100% in most cases, while
our technique can generally reduce ASRs to around 15%.

• We design an adaptive attack that is aware of the proposed
defense and show that FLIP still remains effective and is
resilient to adaptive attacks.

• We conduct ablation studies on each component of FLIP
and validate FLIP is generally effective with various
downstream trigger reverse techniques.

Threat Model. We consider FL backdoor attacks per-
formed by malicious local clients, which manipulate local
models by training with poisoned samples. On the be-
nign clients side, we do not assume any knowledge about
the ground truth trigger, benign clients generate the trig-
ger based on received model weights and their local data
(non-i.i.d.), then perform both standard training on clean
data and adversarial training on augmented data (clean sam-
ples stamped with inverted triggers). On global server side,
it knows nothing about the returned local weights and no
assumption about the data, and thus there is no information
leakage or privacy violence. On the attacker’s side, the at-
tack goal is to backdoor the global model with a high attack
success rate and maintain a similar clean accuracy on the
main task. We consider the practical oblivious but honest
attack setting that a defender has no control over malicious
clients, and they can perform any kind of attack, e.g. model
replacement or scale weights. They can attack any round
in FL, or even in the extreme case that they attack in every
round after the global model converges (if an attack from
the initial round, the model won’t converge [43]), as long as
attackers follow the federated learning protocol. In this pa-
per, we consider static backdoors, i.e. patch backdoors [11].
Dynamic backdoors such as reflection backdoors [22], com-
posite backdoors [18], and feature space backdoors [6] will
be our future work.

2. Background & Related Work
Federated Learning Backdoor Attack and Defense.
Given federated learning private local model training, the

attacker could hijack some local clients and inject backdoor
into global aggregated model [2, 38, 43]. To defend against
federated learning backdoor attacks, a number of defense
methods have been proposed. They mainly focus on robust
aggregation [3, 31, 33] or detecting abnormal gradients up-
date [10].
Federated Learning Robustness. Recently provable de-
fense and certification methods have also been applied to
federated learning. SparseFed [30] proposes global top-k
update sparsification and provides a theoretical framework.
CRFL [42] uses clipping and smoothing on model parame-
ters to provide a sample-wise robustness certification.

3. Methodology & Theoretical analysis

We presented a new provable defense framework with
theoretical guarantees and a novel trigger inversion tech-
nique under FL. The key insight is to combine trigger inver-
sion techniques with FLIP, as long as the reversed trigger
satisfies our given bound, then we can guarantee attack suc-
cess rate will decrease and in the meantime the model can
maintain similar accuracy on clean data.

3.1. Methodology

As illustrated in Figure 1, benign local clients apply trig-
ger inversion techniques to recover the triggers, stamp them
on clean images and assign the correct ground truth label,
then combine with the clean data to perform model harden-
ing (adversarial training). Trigger inversion is an effective
and widely used technique in backdoor defense. Given a
model and a few clean images, trigger inversion uses opti-
mization to identify universal input perturbations that can
flip the classification results of the clean images to a target
class. Model hardening can force a model to unlearn unro-
bust (low-level) features. Cached Warm-up is designed for
benign local clients and intends to reverse engineer triggers
from the received global model (which could potentially
be poisoned by malicious clients after each round aggre-
gation). Existing work [34] shows that symmetric training
of the two directions of a pair substantially alleviates os-
cillation and improves effectiveness. However, symmetric
training needs the data from two directions of the selected
pair, it is not feasible due to the non-i.i.d. nature of FL, then
we propose asymmetric training when data is not sufficient
for training to fit federated learning scenarios. More details
can be found in Appendix A.4.

3.2. Theoretical analysis

In this section, we develop a theoretical analysis in an or-
acle view to study the effectiveness of our proposed defense
in a simple but representative FL setting. The key insights
are: (i) developing upper and lower bounds quantifying the
cross-entropy loss changes on backdoored and clean data in



the settings of with and without the defense in place (Theo-
rem 1); (ii) showing a sufficient condition on the quality of
trigger recovery such that the proposed defense is provably
effective in mitigating backdoor attacks (Theorem 2); (iii)
following (ii), we show that data inference with confidence
thresholding on models trained with our proposed defense
can provably reduce the backdoor attack success rate while
maintaining similar accuracy on clean data.

Table 1. Table of main notations

Notation Description

xk,j , yk,j k-th client device j-th data sample and its label
qs,i s-th sample i-th label index
Wk

r k-th client device in r-th round weights
W local model weights without defense
W ′ local model weights with defense
τ confidence threshold
Rb number of rejected backdoor samples without defense
R′

b number of rejected backdoor samples with defense
Rc number of rejected clean samples without defense
R′

c number of rejected clean samples with defense
δ ground truth trigger
ϵ difference of reversed trigger and ground truth trigger
δ + ϵ various trigger inversion technique recovered trigger
z benign samples stamped with recovered trigger
Lg global model loss without defense
L′
g global model loss with defense

Setting. In theoretical analysis, we assume that we are un-
der the FedAvg [25] protocol. In order to simplify analysis
without the loss of generality, we assume there is one global
server and two local clients; one is benign and the other is
malicious. We conduct the analysis on multi-class classi-
fication using logistic regression. Our analysis focuses on
per-step updates for local clients and a global learner.

Theorem 1 develops upper and lower bounds quantify-
ing the loss changes on backdoored and clean data in the
settings with and without the defense in place.

Theorem 1 (Bounds on Loss Changes) Let L′
g denote the

global model loss with defense, Lg as without defense, let
∆W = W ′ − W denote the weight differences with and
without defense. The loss difference with and without de-
fense can be upper and lower bounded by

min
t
(x∆W )t −

I∑
i=1

qi(x∆W )i ≤ L′
g − Lg ≤

max
t

(x∆W )t −
I∑

i=1

qi(x∆W )i

(1)

The above theorem bounds the loss changes. The detailed
proof is provided in Appendix A.2. To facilitate the anal-
ysis, we denote the upper bound as ∆max loss and the
lower bound as ∆min loss. To efficiently reduce the at-
tack success rate and maintain the clean accuracy, we stud-
ied this lower bound on backdoor data, which indicates the

minimal improvements on the backdoor defense. Similarly
we studied the upper bound for clean data, as they indicates
the worst-case accuracy degradation.

Denote the number of backdoor samples as nb and
the number of benign samples as nc. Note backdoor
samples are written as xs + δ. By using Theorem 1,
we have ∆min loss = mint[

∑nb

s=1(xs + δ)∆W ]t −∑nb

s=1

∑I
i=1 qs,i[(xs + δ)∆W ]i. And similarly on be-

nign data, we have ∆max loss xs, ∆max loss =
maxt(

∑nc

s=1 xs∆W )t −
∑nc

s=1

∑I
i=1 qs,i(xs∆W )i.

Next, we aim to develop a sufficient condition on the
quality of trigger recovery such that the proposed defense
is provably effective in mitigating backdoor attack and in
the meantime maintaining similar accuracy on clean data,
based on Theorem 1.

Theorem 2 (General Robustness Condition) Let α =

ηr
∑nb

s=1

∑I
i=1(qt∗,i − qs,i){zs

∑n1

j=1[zj
T (qj − p(zj))]}i

b
{
ηr

∑nb

s=1

∑I
i=1(qt∗,i − qs,i){

∑n1

j=1[zj
T (qj − p(zj))]}i

}
where b = [b1, ..., bd], d is the sample dimension, let bv =

sign
{
ηr

∑nb

s=1

∑I
i=1(qt∗,i − qs,i)

∑n1

j=1[zj
Tqj − p(zj)]]i,v

}
,

on all dimensions v of the vector. For all ||ϵ||∞ ≤ α, we
have ∆min loss ≥ 0.
And we have ∆max loss ≤ ηr

∑nc

s=1

∑I
i=1(qt′ ,i −

qs,i)xs

∑n1

j=1[zj
T (qj − p(zj))]i.

The detailed proof is provided in Appendix A.3. De-
note z as x + δ + ϵ for simplicity, that is the benign
sample stamped with the recovered trigger. Note that
∆min loss ≥ 0 indicates that the defense is prov-
ably effective than without defense. Since benign lo-
cal clients training can increase global model backdoor
loss, and they have positive effects on mitigating malicious
poisoning effect. The second condition ∆max loss ≤
ηr

∑nc

s=1

∑I
i=1(qt′ ,i − qs,i)xs

∑n1

j=1[zj
T (qj − p(zj))]i in-

dicates that the defense is provably guarantee maintaining
similar accuracy on clean data.

Corollary 1 Assume ϵ satisfies Theorem 2, let nb as back-
doored samples, nc as benign samples, τ as confidence
threshold. Then the number of backdoored samples that are
rejected is Rbd = R′

b − Rb, the number of benign samples
that are rejected is Rbn = R′

c −Rc

R′
b and Rb denote the rejected backdoor samples with

and without defense. Similarly, R′
c and Rc denote the num-

ber of rejected benign samples with and without defense.
With defense, R′

b is
∑nb

j=1 1(Lg + ∆min loss > Lτ );
and without defense, Rb is

∑nb

j=1 1(Lg > Lτ ). Thus,
the exact value of rejected backdoored samples can be cal-
culated through Rbd = R′

b − Rb. Similarly, the exact
value of rejected benign samples can be calculated through
Rbn = R′

c −Rc.



4. Experiment
Experiment Setup In this section, we empirically evalu-
ate FLIP under two existing attack settings, i.e. single-shot
attack [2] and continuous attack [43]. Single-shot back-
door attack means that every adversary only participates
in one single round, while there can be more than one at-
tacker. Continuous backdoor attack means in each round
the attackers will be selected and continuously participate
in the FL training from beginning to the end, which is a
much more aggressive attack than single-shot. We compare
the performance of FLIP with 8 state-of-the-art defenses,
i.e. Krum [3], Bulyan Krum (Buly-Krum) [8], RFA [31],
FoolsGold [10], Median [44], Trimmed Mean [44], Bulyan
Trimmed Mean (Buly-Trim-M) [8], and FLTrust [4].
Evaluation on Backdoor Mitigation We consider the
backdoor attack via model replacement approach where the
attackers train their local models with backdoored samples.

The result of single-shot attack is shown in Table 2. Line
2 illustrates the attack performance with no defense. Ob-
serve that the single-shot attack can achieve more than 80%
ASR throughout all the datasets while preserve high main
task accuracy over 77%. The following lines show the de-
fense performance of several existing techniques and last
line denotes the result of FLIP. We can find that FLIP can
reduce the ASR to below 8% on all 3 datasets and keep be-
nign accuracy degradation within 5%. FLIP outperforms all
the baselines on both MNIST and Fashion-MNIST while is
slightly worse on CIFAR-10.

Table 2. Single-shot attack evaluation

Baselines
MNIST F-MNIST CIFAR-10

ACC ASR ACC ASR ACC ASR

No Defense 97.55 80.12 81.01 96.72 77.52 80.46

Krum 97.50 0.35 79.49 10.79 77.00 9.51
Bulyan Krum 97.76 0.39 81.45 6.42 79.65 5.77
RFA 97.93 0.39 81.82 4.39 79.54 6.13
Trimmed Mean 97.81 0.38 81.81 5.40 79.95 5.81
Buly-Trim-M 97.02 90.75 79.84 99.38 66.69 84.05
FoolsGold 97.51 0.39 80.59 5.64 78.67 3.70
Median 97.76 0.37 81.76 5.97 64.31 2.39
FLTrust 97.26 0.48 79.92 7.69 72.44 2.18

FLIP 96.05 0.13 78.20 3.16 73.41 7.83

We show the results of continuous attack in Table 3.
Continuous attack is more aggressive than the single-shot
one where the ASR is raised 3-20% without defense. Note
that the existing defense techniques all fail under the con-
tinuous attack setting. The ASR remains nearly 100% in
most cases on MNIST and Fashion-MNIST and is higher
than 63% on CIFAR-10. However, FLIP reduces ASR to
a low level and keeps the accuracy degradation within an

acceptance range. We observe that FLIP reduces the ASR
on MNIST to 2% and the accuracy drop is within 2%. In
Fashion-MNIST and CIFAR-10 dataset, the ASR is reduced
to below 18% and 23% respectively while the accuracy de-
creases a bit more compared to the results of MNIST and
single-shot attack. This is reasonable due to the reasons
as follows. First the complexity of the dataset and continu-
ous backdoor attacks may add to the difficulty of recovering
good quality triggers. In addition, there is a trade-off be-
tween adversarial training accuracy and standard accuracy
of a model as discussed in [36]. Benign local adversarial
training can cause negative effects on the accuracy. How-
ever, we argue that FLIP still outperforms existing defenses
as the ASR is largely reduced to a low level.

Table 3. Continuous attack evaluation

Baselines
MNIST F-MNIST CIFAR-10

ACC ASR ACC ASR ACC ASR

No Defense 98.71 100.00 80.35 99.99 77.83 84.73

Krum 97.59 0.14 73.18 20.03 40.29 18.79
Bulyan Krum 98.15 94.01 82.17 99.46 68.61 97.31
RFA 98.54 100.00 85.69 100.00 79.39 63.10
Trimmed Mean 98.52 100.00 84.59 99.99 75.18 91.84
Buly-Trim-M 98.80 100.00 76.18 99.93 71.91 68.83
FoolsGold 97.91 99.99 80.58 99.98 74.57 78.30
Median 98.14 66.01 84.07 99.34 57.01 69.99
FLTrust 91.96 20.60 74.63 35.36 74.85 68.70

FLIP 96.62 1.93 72.99 17.65 71.28 22.90

Evaluation on the Same Setting as Theoretical Analysis.
We conduct an experiment that follows the same setting as
our assumptions to validate our theoretical analysis. Details
can be found in Appendix A.5.2.

Adaptive Attacks We study an attack scenario where the
adversary has the knowledge of FLIP, our results show that
FLIP still mitigates the backdoor attacks in most cases. For
those that ACC does degrade, the adaptive attack is not ef-
fective. Details can be found in Appendix A.5.3.

Ablation Study We study both adversarial training and
thresholding is critical in FLIP framework, in Ap-
pendix A.5.5 and A.5.6. We study another different trigger
inversion technique in FLIP, which can still mitigate back-
doors, we find that FLIP is compatible with any trigger in-
version techniques, in Appendix A.5.7. We study different
sizes of triggers effect and show that our defense can cause a
significant ASR degradation while maintaining comparable
benign classification performance, in Appendix A.5.8. We
also study different threshold influences on ACC and ASR
and show the trade-off between attack success rate and ac-
curacy, in Appendix A.5.9.



Acknowledgements
We thank the anonymous reviewers for their construc-

tive comments. This research was supported, in part
by IARPA TrojAI W911NF-19-S-0012, NSF 1901242
and 1910300, ONR N000141712045, N000141410468 and
N000141712947. Any opinions, findings, and conclusions
in this paper are those of the authors only and do not neces-
sarily reflect the views of our sponsors.

References
[1] Sebastien Andreina, Giorgia Azzurra Marson, Helen
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A.1. Background Related Work

Backdoor Attack and Defense In general, the goal of
backdoor attack is to inject a backdoor pattern and a tar-
get label to the dataset used for training. During testing
phase, any inputs with such pattern will be classified as the
target label. There are a number of existing backdoor at-
tacks, like patch attacks [11, 21], feature space attacks [6],
etc. To identify whether a model is poisoned, existing works
inverse triggers [19, 20, 32, 34, 37], compare difference be-
tween clean models and backdoored models [13, 39], and
some methods detect and reject inputs stamped with trig-
gers [17, 23].

Federated Learning Backdoor Attack and Defense.
Federated learning [12, 25] is recently proposed to train a
deep learning model without direct access to training data
due to privacy concerns. Federated learning distributes the
model training to multiple local clients and iteratively ag-
gregates the local models to a shared global model. Since
FL local model training is private, attackers could hijack
some local clients and inject backdoor into global aggre-
gated model [2, 9, 35, 43]. To defend against FL backdoor
attacks, a number of defenses have been proposed. They
mainly focus on robust aggregation [3, 28, 31, 33], robust
learning rate method [29] or detecting abnormal gradients
update [1, 4, 10]. FLAME [28] proposes a resilient aggre-
gation framework that applies model clustering and clipping
to minimize the injected noise and ensure backdoor elimi-

nation. FLTrust [4] proposes to inject noise to global model
to neutralize backdoors and apply dynamic clustering and
adaptive clipping to preserve the benign accuracy.

Federated Learning Robustness. Certified and prov-
able defenses have been proposed to analyze adversarial ro-
bustness. Our certified loss changes for backdoor mitigation
conduct on training-time, while certified accuracy is more
used in test-time attack. Certifying changes in loss is more
suitable for backdoor attack since it involves model train-
ing; while certified accuracy is more used in evasion attacks
that do not involve training, it is less meaningful for back-
door attacks.

Random smooth [7] provides certifiably robustness to
adversarial examples on l2 distance. PatchGuard [40]
provides provable robustness against localized adversarial
patches. Deep partition aggregation [16] propose a certi-
fied defense against general poisoning. Recently provable
defense and certification methods have also been applied to
federated learning. SparseFed [30] proposes global top-k
update sparsification and provides a theoretical framework
for analyzing the robustness of defenses against poisoning
attacks. Ensemble federated learning [5] proposes to learn
multiple global models and provide provably secure against
malicious clients. CRFL [42] uses clipping and smoothing
on model parameters to provide a sample-wise robustness
certification on backdoors with limited magnitude.

A.2. Proof of Bounds on Loss Changes

In this section, we will present the bound on loss
changes, formulate the benign local clients training and
global model aggregation process, and then provide the de-
tailed proofs for our Theorem 1 that are related to loss
changes bound. Note that, we list all the notations used
in the paper in Table 4.
Generalize Proof to complex model architectures Given
that extending to multi-layer is not trivial, this will make
the proof becomes challenging to generalize, we focus on
multi-class logistic regression (one linear layer with soft-
max function and cross-entropy loss), which is a convex
classification problem. Meanwhile, we empirically evaluate
the effectiveness of our framework at scale across MNIST,
Fashion-MNIST, and CIFAR-10, trained with non-linear
neural networks. It shows that the results significantly out-
perform prior works on the SOTA continuous FL backdoor
attack setting.

Throughout this paper, ”clean training” refers to benign
local clients training with clean data; ”adversarial training”
refers to benign local clients apply trigger inversion tech-
niques to get reversed trigger, then stamp the trigger to their
local clean image and assign with ground truth clean label
to get the augmented dataset, then train with the augmented
dataset.

In benign clients, we train with defense technique to gen-



Table 4. Table of notations

Notation Description

xk,j , yk,j the k-th client device j-th data sample and its label
qs,i the s-th sample i-th label index
W k

r the k-th client device in r-th round weights
W local model weights without defense
W ′ local model weights with defense
τ confidence threshold
Rb the number of rejected backdoor samples without defense
R′

b the number of rejected backdoor samples with defense
Rbd = R′

b −Rb the number of backdoored samples that are rejected after defense applied
Rc the number of rejected benign samples without defense
R′

c the number of rejected benign samples with defense
Rbn = R′

c −Rc the number of benign samples that are rejected after defense applied
δ the ground truth trigger
δ + ϵ the various trigger inversion technique recovered trigger
ϵ the difference between the reversed trigger and the ground truth trigger
z = x+ δ + ϵ z denotes the benign sample stamped with the recovered trigger
Lg the global model loss without defense
L′
g the global model loss with defense

erate trigger, then do adversarial training and submit gradi-
ents to global server. Given model parameter W of one lin-
ear layer, k-th device holds the nk training data xk,nk

, then
denoted the loss as L(W ;xk,nk

). Let Y ∈ {0, 1}i denote a
one-hot vector of local samples. For x, we denote xW as
the output of the linear layer, pi(x) = softmax(xW + b)i
as the normalized probability for class i (the output of the
softmax function). b or bias is omitted in following equa-
tions for simplicity, but it would still work if added. For one
example the cross-entropy loss is calculated as:

L(x) = −
∑
i

Yilogpi(x) (2)

= −
∑
i

Yilog(softmax(xW )i) (3)

We define G as the gradient for one sample:

G(x) = ∇l(W ;x, y) =
dL
dw

(x) = xT (p(x)− Y ) (4)

Similarly, when defense technique get reversed trigger
and stamp it on clean image, then we get the augmented
dataset, denote is as xaug , then the gradient on augmented
dataset G′ can be written as:

G′(xaug) = ∇l(W ;xaug, y) = xT
aug(p(xaug)− Y )) (5)

Here, we describe one around (say the r-th) of the stan-
dard FedAvg algorithm. When the benign device in k-th
receive the global weights Wr, and then performs E (= 1)

local updates (lets W k
r = Wr), in benign clients, we train-

ing on both clean dataset and augmented dataset:

W k
r+1 ←W k

r − ηr∇Fk(W
k
r , ξ

k
r )

←W k
r − ηr[

nk∑
j=1

[xT,k
j (p(xk

j )− Yj)]

+

nk∑
j=1

[xT,k
aug,j(p(x

k
aug,j)− Yj)]]

←W k
r − ηr

nk∑
j=1

[xT,k
j (p(xk

j )− Yj)]

− ηr

nk∑
j=1

[xT,k
aug,j(p(x

k
aug,j)− Yj)]

(6)

where ηr is the learning rate (a.k.a. step size), nk is the
number of samples in k-th client.

In global server, define δ as the malicious clients gener-
ated trigger, δ + ϵ as the benign clients generated trigger,
then we can represent backdoored sample as (x + δ) and
augmented sample as (x + δ + ϵ). Benign clients updates
can be written as:

W k
r+1 ←W k

r − ηr

nk∑
j=1

[xT,k
j (p(x)kj )− Y k

j )]

− ηr

nk∑
j=1

[(xj + δ + ϵ)T,k(p(xj + δ + ϵ)k)− Y k
j )]

(7)



In the threat model Section 1, we consider the practical
oblivious but honest attack setting that a defender has no
control on malicious clients and they can perform any kinds
of attack, as long as attackers follow the federated learning
protocol. Thus, we represent the malicious clients updates
as WM .

After each local finished their training, they submit their
model updates to global. Then global aggregation step per-
forms

Wr+1 ← ηr

N∑
k=1

gkW
k
r+1 (8)

gk is the weight of the k-th device. In order to simplify,
here we take gk as 1 and assume we only have two clients
(N=2), k = 1 is benign client, n1 denotes the number of
samples in this benign client. Then the aggregated global
weight are the each local weights aggregate together. Then
the aggregated global weight can be written as

Wr+1 =

N∑
k=1

W k
r+1

= W 1
r+1 +W 2

r+1

= −ηr
n1∑
j=1

[xT,k
j (p(x)kj )− Y k

j )]

− ηr

n1∑
j=1

[(xj + δ + ϵ)T,1(p(xj + δ + ϵ)1 − Y 1
j )]

+ 2Wr −WM

= −ηr
n1∑
j=1

[xT,k
j (p(x)kj )− Y k

j )]

− ηr

n1∑
j=1

[(xj + δ + ϵ)T,1(p(xj + δ + ϵ)1 − Y 1
j )]

+ 2Wr −WM

(9)
When we consider the without defense setting, δ + ϵ not
exists, in round t+1, Wt+1 the global weight without local
weights can be written as

Wr+1 = −ηr
n1∑
j=1

[xT,1
j (p(x)1j − Y 1

j )] + 2Wr −WM (10)

When we consider the with defense setting, δ + ϵ exists,
in round t+1, Wt+1 the global weight without local weights

can be written as

W ′
r+1 = −ηr

n1∑
j=1

[xT,1
j (p(x)1j − Y 1

j )]

− ηr

n1∑
j=1

[(xj + δ + ϵ)T,1(p(xj + δ + ϵ)1 − Y 1
j )]

+ 2Wr −WM

(11)
The difference between with defense and without defense
training is exactly how much adversarial training in benign
will influence other clients, it can be written as

W ′
r+1 −Wr+1 = −ηr

n1∑
j=1

[(xj + δ + ϵ)T,1(p(xj + δ + ϵ)1

− Y 1
j )]

(12)

Given model parameter W of one linear layer, the k-th
device holds nk training data {xk,j , yk,j}nk

j=1. We denote
the loss as L(W ; {xk,j , yk,j}nk

j=1). Denote xW as the out-
put of the linear layer, Pi(x) = softmax(xW + b)i as the
normalized probability for class i (the output of the soft-
max function). We omit b (bias) in the following theoretical
analysis for simplicity. Adding the bias term to our analysis
is straightforward.

Global softmax cross-entropy loss function can be writ-
ten as:

Lglobal = −
I∑

i=1

qilog(pi)

= −
I∑

i=1

qilogsoftmax(xW )i

= −
I∑

i=1

qilog(
e(xW )i∑I
t=1 e

(xW )t
)

= −
I∑

i=1

qi(xW )i + log(

I∑
t=1

e(xW )t)

= −
I∑

i=1

qi(xW )i + log(

I∑
t=1

e(xW )t)

(13)

Since we want to compare the loss changes in two differ-
ent cases (e.g. with defense and without defense setting), to
observe if the dedution of the loss increase or decrease, here
we let the two losses (say L′

g is with defense, Lg is without



defense) deduct each other:

L′
g − Lg = −

I∑
i=1

qi(xW
′)i + log(

I∑
t=1

e(xW
′)t)

+

I∑
i=1

qi(xW )i − log(

I∑
t=1

e(xW )t)

= −
I∑

i=1

qi[(W
′ −W )x]i

+ log(

I∑
t=1

e(xW
′)t)− log(

I∑
t=1

e(xW )t)

= −
I∑

i=1

qi[(W
′ −W )x]i + log(

∑I
t=1 e

(xW ′)t∑I
t=1 e

(xW )t
)

(14)
Since both

∑I
t=1 e

(xW ′)t and
∑I

t=1 e
(xW )t are a

sequence of positive numbers. Then from [27] we can have
an inequality of

min
1≤t≤I

e(xW
′)t

e(xW )t
≤

∑I
t=1 e

(xW ′)t∑I
t=1 e

(xW )t
≤ max

1≤t≤I

e(xW
′)t

e(xW )t
(15)

Proof.

If we denote m = mint
e(xW ′)t

e(xW )t
and M = maxt

e(xW ′)t

e(xW )t
,

then we have successively

m ≤ e(xW
′)t

e(xW )t
≤M (16)

m · e(xW )t ≤ e(xW
′)t ≤M · e(xW )t (17)

m ·
I∑

t=1

e(xW )t ≤
I∑

t=1

e(xW
′)t ≤M ·

I∑
t=1

e(xW )t (18)

m ≤
∑I

t=1 e
(xW ′)t∑I

t=1 e
(xW )t

≤M (19)

Then we can get

min
1≤t≤I

e(xW
′)t

e(xW )t
≤

∑I
t=1 e

(xW ′)t∑I
t=1 e

(xW )t
≤ max

1≤t≤I

e(xW
′)t

e(xW )t
(20)

By using log function monotonicity property, we can get
an inequality of

logm ≤ log(

∑I
t=1 e

(xW ′)t∑I
t=1 e

(xW )t
) ≤ logM (21)

So the deduction of L′
g − Lg can be written as:

logm−
I∑

i=1

qi[x(W
′ −W )]i ≤ L′

g − Lg ≤

logM −
I∑

i=1

qi[x(W
′ −W )]i

(22)

logmin
t

e(xW
′)t

e(xW )t
−

I∑
i=1

qi[x(W
′ −W )]i ≤ L′

g − Lg ≤

logmax
t

e(xW
′)t

e(xW )t
−

I∑
i=1

qi[x(W
′ −W )]i

(23)
Denote the left hand side of above formula as

∆min loss, denote the inequality’s right hand side value
as ∆max loss.

∆min loss = logmin
t

e(xW
′)t

e(xW )t
−

I∑
i=1

qi[x(W
′ −W )]i

= min
t

log
e(xW

′)t

e(xW )t
−

I∑
i=1

qi[x(W
′ −W )]i

= min
t

loge[x(W
′−W )]t −

I∑
i=1

qi[x(W
′ −W )]i

= min
t
[x(W ′ −W )]t −

I∑
i=1

qi[x(W
′ −W )]i

(24)
Then we can get the lower bound and upper bound of

L′
g − Lg

min
t
[x(W ′ −W )]t −

I∑
i=1

qi[x(W
′ −W )]i ≤ L′

g − Lg ≤

max
t

[x(W ′ −W )]t −
I∑

i=1

qi[x(W
′ −W )]i

(25)
Let L′

g denote the global model loss with defense, Lg as
without defense, let ∆W = W ′ − W denote the weight
differences with and without defense. The loss difference
with and without defense can be upper and lower bounded
by (as shown in Theorem 1)

min
t
(x∆W )t −

I∑
i=1

qi(x∆W )i ≤ L′
g − Lg ≤

max
t

(x∆W )t −
I∑

i=1

qi(x∆W )i

(26)

To facilitate the analysis, we denote the upper bound as
∆max loss and the lower bound as ∆min loss. To effi-
ciently reduce the attack success rate and maintain the clean



accuracy, we studied this lower bound on backdoor data,
which indicates the minimal improvements on the backdoor
defense. Similarly we studied the upper bound for clean
data, as they indicates the worst-case accuracy degradation.

Denote the number of backdoor samples as nb and
the number of benign samples as nc. Note backdoor
samples are written as xs + δ. By using Theorem 1,
we have ∆min loss = mint[

∑nb

s=1(xs + δ)∆W ]t −∑nb

s=1

∑I
i=1 qs,i[(xs + δ)∆W ]i. And similarly on be-

nign data, we have ∆max loss xs, ∆max loss =
maxt(

∑nc

s=1 xs∆W )t −
∑nc

s=1

∑I
i=1 qs,i(xs∆W )i.

A.3. Proof of General Robustness Condition

In this section, we will present general condition of ro-
bustness on trigger generation, formulate ∆min loss on
backdoored data and ∆max loss on clean data, and then
provide the detailed proofs for our Theorem 2 that are re-
lated to general robustness condition.

Our intuition is that we want the loss to increase more
on backdoored data, and increase less on clean data. This
means after applying defense, the global server loss in back-
doored data will increase and the loss in clean data will
change within a constant range. Accordingly, when eval-
uate on nb backdoored data, we want the lower bound at
least greater than 0, ∆min loss ≥ 0. When evaluate on nc

clean data, we want the upper bound ∆max loss ≤ ζ, here
ζ is a constant. In evaluation, denote global server has nb

backdoored data and nc clean data for testing.

When evaluating on nb backdoored data

L′
g − Lg ≥ min

t
[

nb∑
s=1

(xs + δ)(W ′ −W )]t

−
nb∑
s=1

I∑
i=1

qs,i[(xs + δ)(W ′ −W )]i

= ∆min loss ≥ 0

(27)

When evaluating on nc clean data

L′
g − Lg ≤ max

t
[

nc∑
s=1

xs(W
′ −W )]t

−
nc∑
s=1

I∑
i=1

qs,i[xs(W
′ −W )]i

= ∆max loss ≤ ζ

(28)

Since previous results we know W ′
r+1 − Wr+1 can be

represented as

W ′
r+1 −Wr+1 = −ηr

n1∑
j=1

[(xj + δ + ϵ)T (p(xj + δ + ϵ)− Yj)]

= ηr

n1∑
j=1

[(xj + δ + ϵ)T (Yj − p(xj + δ + ϵ))]

(29)
Give that qi is a one-hot vector, we denote the value of

mint as qt∗ , then substitute (W ′ −W ) in ∆min loss we
can get

∆min loss = min
t
[

nb∑
s=1

(xs + δ)(W ′ −W )]t

−
nb∑
s=1

I∑
i=1

qs,i[(xs + δ)(W ′ −W )]i

= ηr

nb∑
s=1

I∑
i=1

qt∗,i[(xs + δ)

n1∑
j=1

[(xj + δ + ϵ)T (Yj

− p(xj + δ + ϵ))]]i

− ηr

nb∑
s=1

I∑
i=1

qs,i[(xs + δ)

n1∑
j=1

[(xj + δ + ϵ)T (Yj

− p(xj + δ + ϵ))]]i

= ηr

nb∑
s=1

I∑
i=1

(qt∗ − qs,i)[(xs + δ)ηr

n1∑
j=1

[(xj

+ δ + ϵ)T (Yj − p(xj + δ + ϵ))]]i
(30)

Let zs = xs + δ + ϵ and zj = xj + δ + ϵ, then the
∆min loss is

∆min loss = ηr

nb∑
s=1

I∑
i=1

(qt∗ − qs,i)[(zs

− ϵ)

n1∑
j=1

[zTj (Yj − p(zj))]]i

(31)

Let

f(ϵ) = ∆min loss

= ηr

nb∑
s=1

I∑
i=1

(qt∗,i − qs,i){(zs − ϵ)

n1∑
j=1

[zTj (Yj − p(zj))]}i

(32)
Compute the gradient of f(ϵ), we have

∇f(ϵ)
∇ϵ

= −ηr
nb∑
s=1

I∑
i=1

(qt∗,i − qs,i)[

n1∑
j=1

[zTj (Yj − p(zj))]]i

(33)



Let ||ϵ||∞ ≤ α, and that f(ϵ) is a linear function, we
know the minimal value of f(ϵ) is achieved when

ϵk = α sign

ηr

nb∑
s=1

I∑
i=1

(qt∗,i − qs,i)

n1∑
j=1

[zTj (Yj − p(zj))]]i,k


(34)

For simplicity, denote bk as

bk = sign

ηr

nb∑
s=1

I∑
i=1

(qt∗,i − qs,i)

n1∑
j=1

[zTj (Yj − p(zj))]]i,k


(35)

and the vector as b = [b1, ..., bd]. The minimal condition
is thus ϵ = αb.

Replace ϵ = αb into eq. (32), and in order to be consis-
tent with previous section in main text Theorem 2, we use
qj to replace Yj , we have

f(ϵ) ≥

ηr

nb∑
s=1

I∑
i=1

(qt∗,i − qs,i){(zs − αb)

n1∑
j=1

[zj
T (qj − p(zj))]}i

(36)
The sufficient condition of f(ϵ) ≥ 0 is thus

ηr

nb∑
s=1

I∑
i=1

(qt∗,i − qs,i){(zs − αb)

n1∑
j=1

[zj
T (qj − p(zj))]}i ≥ 0

(37)

αb{ηr
nb∑
s=1

I∑
i=1

(qt∗,i − qs,i){
n1∑
j=1

[zj
T (qj − p(zj))]}i}

≤ ηr

nb∑
s=1

I∑
i=1

(qt∗,i − qs,i){zs
n1∑
j=1

[zj
T (qj − p(zj))]}i

(38)
Note that for any vector x, we have sign (x)x ≥ 0. And

we can divide the right hand side by the left hand side and
finish the prove.

α ≤
ηr

∑nb

s=1

∑I
i=1(qt∗,i − qs,i){zs

∑n1

j=1[zj
T (qj − p(zj))]}i

b{ηr
∑nb

s=1

∑I
i=1(qt∗,i − qs,i){

∑n1

j=1[zj
T (qj − p(zj))]}i}

(39)

Each term in above can be computed, then we can always
find a small enough error range ϵ where surely improve the
loss function.

Similarly, for upper bound of ∆max loss, let

g(ϵ) = ∆max loss

= ηr

nc∑
s=1

I∑
i=1

(qt′ ,i − qs,i)xs

n1∑
j=1

[zj
T (qj − p(zj))]i

(40)

Note that g(ϵ) is nothing but a constant with respect to ϵ.
This means that the upper bound loss is up to some constant
with respect to the recovered trigger zj .

Note that ∆min loss ≥ 0 indicates that the defense
is provably effective than without defense. Since benign
local clients training can increase global model backdoor
loss, and they have positive effects on mitigating malicious
poisoning effect. The second condition ∆max loss ≤
ηr

∑nc

s=1

∑I
i=1(qt′ ,i − qs,i)xs

∑n1

j=1[zj
T (qj − p(zj))]i in-

dicates that the defense is provably guarantee maintaining
similar accuracy on clean data.

We now make several remarks about Corollary 1 and will
verify them in our experiments section A.5: 1) We estab-
lish the connection between adversarial training and loss
changes, and we develop upper and lower bounds quanti-
fying the loss changes on backdoored and clean data, on
both settings with and without the defense in place. For in-
stance, benign local client training with perfect recovered
trigger and assign correct label during adversarial training,
it equivalent to benign client is doing exactly opposite train-
ing to attackers, this will reduce attacker’s backdoor sample
confidence, thus we study to validate benign client adversar-
ial training is effective in reducing the attacker confidence
during poison training. 2) The confidence threshold τ is
a hyper-parameter which can be adjusted to control the at-
tack success rate v.s. accuracy trade-off. For instance, in
the rightmost part of Figure 1, the adversarial training al-
ready reduces attacker’s confidence to a low level. However,
without the threshold, the output with the highest probabil-
ity will still be the target label. Thus we study to validate
thresholding is critical during evaluation.

A.4. Methodology

In this section, we detail the design of FLIP, which con-
sists of three main steps as illustrated in Figure 1. The pro-
cedure is summarized in Algorithm 1. (1) Trigger inver-
sion. During local client training-time, benign local clients
apply trigger inversion techniques to recover the triggers,
stamp them on clean images and assign the correct ground
truth label to get the augmented dataset. (2) Model hard-
ening. Benign local clients combine the augmented data
with the clean data to perform model hardening (adversar-
ial training). The local clients submit updated local model
weights to global server and global server will aggregate all
the received weights. (3) Low-confidence sample rejection.
During global inference, we apply a threshold to filter out
samples with low prediction confidence.

Trigger inversion. Backdoor attacks injects hidden mali-
cious behavior to deep learning systems such that any input
with a stamped trigger can lead to such behaviors. Readers
familiar with trigger inversions can skip this subject. Many
existing backdoor defense techniques applying optimization
method to invert the smallest input pattern that flip the clas-



sification results of the clean images to a target class. In
Neural Cleanse [37], the optimization aims to derive a trig-
ger for each class and observe if there is any trigger that
is exceptionally small and hence likely injected instead of
naturally occurring feature. In our paper, universal trigger
generation aims to generate a trigger that can flip samples
of all the classes (other than the target class) to the target
class.

Class distance. Recent work quantifies model robustness
by the class distance [34]. Given some images from source
class s, we generate a trigger, composed of a mask m and a
pattern δ, which can flip the labels of these images stamped
with the trigger to the target class t. The stamping function
is illustrated in Equation 41 and the optimization goal in
Equation 42, where L(·) is the cross entropy, M denotes
the subject model, and || · || denotes the L1, i.e. absolute
value sum.

x′
s→t = (1−m) · xs +m · δ (41)

Loss = L(M(x′
s→t), yt) + α · ||m|| (42)

The class distance ds→t is measured as ||m||. The intu-
ition here is that if it’s easy to generate a small trigger from
source class to target class, the distance between two class is
small. Otherwise, the class distance is large. Furthermore,
the model is robust if all the class distances are large, or one
can easily generate a small trigger between two classes.
Cached Warm-up. Adversarial training on samples with
inverted triggers is a widely-used technique for model hard-
ening. Observe that different label pairs have different dis-
tance capacities and enlarge label pairs distance by model
hardening can improve model robustness and help mitigate
backdoors [34]. While existing trigger inversion methods
optimize all combination of label pairs without selection
will lead to quadratic computation time (O(n2)). In order to
reduce the trigger optimization cost, we first generate uni-
versal triggers for each label as the target instead of generate
triggers for all combination of label pairs, which is linear
time complexity (O(n)). Then we utilize the universal trig-
ger to approximate the distance from each source class to a
target class, and thus we only need to optimize for each tar-
get class. During the optimization, FLIP start with a warm-
up phase, which sort label pairs based on the distance, and
each iteration we prioritize the promising pairs with small
distance. Then the trigger optimization only needs to find
out the backdoor that can flip most promising label pairs and
update the label pairs distance matrix. In order to save com-
putation, each benign local client will maintain a ranking
matrix of promising pairs, which is so-called cached warm-
up. When the client is selected again, promising pairs can
be selected from the matrix and will be updated.

In Algorithm 1, each local client utilize their local sam-
ples as the source label and approximate the distance to the

Algorithm 1 FLIP
1: Globals input: initial model parameters w0, total training

round Rd, random select K local clients
2: Local client’s input: local dataset D : {x, y} and learning

rate η
3: for each training round r in [1, Rd] do
4: for each client k in [1,K] do
5: wk

r+1 ← Local Update (wr, Dk) ▷ The aggregator
sends wr to Client k who invert triggers based on wr and its
Data Dk : D : {xk, yk} locally and sends wk

r+1 back to the
aggregator.

6: end for
7: wr+1 ← ηr

∑N
k=1 w

k
r+1 ▷ Global server aggregating all

received weights from different clients.
8: end for
9: Global output: wr+1 ▷ Global model after Rd rounds.

10: function LOCAL UPDATE(wr, Dk)
11: if client k never selected then
12: for each label existing in client k do
13: (d1,1, · · · , ds,t)← L1(source, target) ▷ Store all

pair-wise distances to Cache matrix
14: promising pairs← Cache(k) ▷ Select top few

promising pairs from cache matrix
15: end for
16: else if client k selected before then
17: promising pairs← Cache(k)
18: end if
19: if promising pairs exist in dataset then
20: xadv ← Symmetric Train (wr, xk, yk)
21: else
22: xadv ← Asymmetric Train (wr, xk, yk)
23: end if
24: wk

r+1 ← Adversarial Train ({xk, xadv}, {yk, yadv}) ▷
Adversarial training on clean and augmented data, yadv is the
ground truth label of xadv .

25: return wk
r+1

26: end function
27: function GLOBAL MODEL INFERENCE(wk

r+1, τ , x, δ) ▷ τ is
the confidence threshold, x is the test sample, δ is the ground
truth trigger

28: Rbd =
∑

1{M(x+ δ;wk
r+1) < τ}

29: Rbn =
∑

1{M(x;wk
r+1) < τ}

30: return Rbd, Rbn ▷ return the number of rejected backdoor
samples (Rbd) and benign samples(Rbn) below τ

31: end function

target label (measured by L1, line 10, 11). Then based on
the distance enlargement potentiality, each client cache up
the ranking matrix of promising pairs (line 12). Given that
each local clients are trained for a very few iterations in each
round, while the warm-up phase can take up a large portion
of training iterations. when the same client is selected again,
the cache (store) the ranking matrix can be directly used to
select promising label pairs (line 13, 14), which saves train-
ing efforts since this client won’t need to warm up again.
That is, cached warm-up. The cached ranking matrix will



be updated and stored locally for every selected round in
each client own device. It allows more iterations allocated
for model hardening and subsequently, significantly boost
model robustness against backdoor attacks.

(A)symmetric Hardening. Given a label pair of label 1
and label 2, there are two directions for trigger inversion,
from 1 to 2 and from 2 to 1. A straightforward idea is to
invert from both directions on the same time [34]. How-
ever, it is impossible due to the non-i.i.d nature of federated
learning local client data, since each local client training
data can be extremely unbalanced and there may be very
few or even no samples for certain labels in a certain lo-
cal client. During model hardening (adversarial training), a
promising class pair will be selected for hardening in each
iteration, according to the cached probability matrix men-
tioned above. We hence separate the model hardening into
bidirectional or single directional based on data availability,
which accordingly symmetric or asymmetric model harden-
ing. That is, if there exist sufficient data for the two labels
of a class pair, symmetric hardening is carried out by gener-
ating triggers for the two directions and stamped on the cor-
responding source labels simultaneously (Algorithm 1 line
15, 16). If there are samples only from one label of a pair,
we then only harden the direction from this label to the tar-
get (Algorithm 1 line 17, 18). Recovered trigger example as
shown in Appendix Figure 2.(c). After local benign clients
finishing model hardening, they submit the updated model
weights to global server (Algorithm 1 line 19, 20, 5), then
global server will aggregate all the received local clients’
model weights (Algorithm 1 line 6) and perform the global
inference (Algorithm 1 line 7). Such (a)symmetric harden-
ing design allows us to make full use of all the available
data in each client.

In Algorithm 2, we present more details about the sym-
metric and asymmetric inversion. We first initialize the
backdoor mask and trigger with the input values. The in-
dicator vector p denotes the direction of symmetric harden-
ing, i.e. 1 denotes label a to b, otherwise, 0 denotes label
b to a (line 1-3), which only used in symmetric training. If
the client has sufficient data (i.e. more than 5 images for
a label) for the both labels of a label pair (a, b), symmetric
hardening is carried out by generating triggers for the two
directions (a → b and b → a). During the optimization,
generated triggers are stamped on the samples of the corre-
sponding label (line 9-11). If the client only has data of one
label of a label pair (a, b), we do the asymmetric hardening
for one direction from the available label to the target (i.e.,
a → b) and stamp the generated triggers on corresponding
class samples (line 14, 15).

Low-confidence Sample Rejection. As the benign local
clients hardening is contradict to malicious local clients poi-
soning, in other words, the injected backdoor features in
aggregated global model will be mitigated by the benign

Algorithm 2 Symmetric and Asymmetric Inversion

1: Input: local model parameters Wr , local client data {xk, y}
2: Initialization: Xn ← a batch of x ∈ xk

3: Initialization: Initialize model M from model weights Wr ,
label (a, b), p is an indicator vector denotes symmetric direc-
tion

4: if minit is not None and δinit is not None then
5: m, δ ← minit, δinit

6: else
7: m, δ ← random init with shape of x ∈ xk

8: end if
9: function SYMMETRIC TRAIN(Wr , xk, y)

10: for step in [0,max steps] do
11: X ′

n = p ·
(
(1−m[0]) ·Xn +m[0] · δ[0]

)
12: +(1− p) ·

(
(1−m[1]) ·Xn +m[1] · δ[1]

)
13: end for
14: return X ′

n

15: end function
16: function ASYMMETRIC TRAIN(Wr , xk, y)
17: for step in [0,max steps] do
18: X ′

n = (1−m) ·Xn +m · δ
19: end for
20: return X ′

n

21: end function

clients’ hardening. Intuitively, benign local clients harden-
ing can FLIP adversaries’ backdoor prediction confidence
from high to low and won’t influence much on benign sam-
ples. During global server inference, we apply a threshold
τ to filter out samples with low prediction confidence after
the softmax layer (Algorithm 1 line 22, 23), which signif-
icantly improves the model’s robustness against backdoor
attacks in federated learning. FLIP is compatible with any
trigger inversion techniques. In the next section, we theo-
retically prove that, as long as the reversed trigger satisfies
our given bound, then we can guarantee attack success rate
will decrease and in the meantime the model can maintain
similar accuracy on clean data.

A.5. More Experimental Details

A.5.1 Details on Experiment Setup

In this section, we illustrate more details about the experi-
mental setups, neural network structures, parameters setups,
etc. For more detailed hyperparameter settings and evalu-
ations, please refer to our code repository, we will release
our code upon the paper acceptance.

We train the FL system following our FLIP framework
on three datasets: MNIST [15], Fashion-MNIST [41] and
CIFAR-10 [14]. MNIST has a training set of 60,000 ex-
amples, and a test set of 10,000 examples and 10 classes.
Fashion-MNIST consists of a training set of 60,000 exam-
ples and a test set of 10,000 examples. Each example is
a 28x28 grayscale image, associated with a label from 10
classes. CIFAR-10 is an object recognition dataset with



32x32 colour images in 10 classes. It consists of 60,000
images and is divided into a training set (50000 images)
and a test set (10000 images). We split the training data
for FL clients in a non-i.i.d. manner, by a Dirichlet distri-
bution [26] with hyperparameter α 0.5, following the same
setting as [2, 43]. We train the FL global model until con-
vergence and then apply various trigger inversion defense
techniques, otherwise the main task accuracy is low and the
backdoored model is hard to converge [43]. Note that the
confidence threshold τ of FLIP discussed in Methodology
section is only used in continuous backdoor attack setting
to filter out low-confidence predictions. Based on our em-
pirical study, we typically set τ = 0.3 for simpler datasets,
e.g. MNIST and Fashion-MNIST, while τ = 0.4 for more
complex datasets, e.g. CIFAR-10. We apply two convolu-
tional layers and two fully connected layers in MNIST and
Fashion-MNIST, and Resnet-18 in CIFAR-10 to train our
model.

(a) (b) (c)

Figure 2. Trigger Examples, (a) is the ground truth trigger, (b)
is malicious client poisoned data, (c) is after benign client trigger
inversion, augmented data

Regarding the attack setting, there are 100 clients in to-
tal by default. In each round we randomly select 10 clients,
including 4 adversaries and 6 benign clients. We do not
have any restrictions on attackers as long as they follow the
federated learning communication protocol. The attackers
inject the pixel-pattern backdoor in images and swap the la-
bel of image source label to target label (by default, label
”2”). Figure 2 (b) shows a backdoored example. During
testing phase, any inputs with such pattern will be classi-
fied as the target label. In single-shot attack, attackers can
choose any round to participate. In continuous attack, at-
tackers participate in every round after model convergence.
Benign clients perform adversarial training continuously in
both settings. We report the ACC and ASR after the attack
happens at least 60 rounds, that is, attackers already achieve
a high and stable attack success rate.

A.5.2 Evaluation on the Same Setting as Theoretical
Analysis

In this section, we conduct an experiment that follows the
same setting as our assumptions to validate our theoretical
analysis. We conduct experiments on the multi-class logis-
tic regression (one linear layer with softmax function and
cross-entropy loss) as the setting in our theory section. We

take MNIST as the example for analysis and it can be easily
extended to other datasets. Regarding the FL system set-
ting, there are one global server and two local clients con-
sisting of one benign client and one malicious client. We
train the FL global model until convergence and then apply
the attack. The attackers inject the pixel-pattern backdoor
in images and swap the label of the image source label to
the target label. We also do not have any restrictions on at-
tackers, as long as attackers follow the federated learning
protocol.

Table 5. Logistic regression evaluation

Attack Type Metric No Defense FLIP

Single-Shot ACC 88.43 84.58
ASR 64.48 5.28

Continuous ACC 83.03 80.76
ASR 63.78 4.90

Table 5 shows the result of single-shot and continuous
attack ACC and ASR on the logistic regression, and Table
6 shows detailed number of clean samples and backdoored
samples that are predicted correctly. If we use total sam-
ples to deduct the predicted correct samples, we can get
the rejected samples, which are corresponding to Rbd and
Rbn in theoretical analysis part. We can see both single-
shot and continuous attack ASRs are reduced to around
5% and maintain the accuracy drop within an acceptable
range. This observation is consistent with our observations
on more complex settings above. In addition, we can com-
pute the number of backdoored samples that are rejected
(Rbd), and the number of benign samples that are rejected
(Rbn) from Table 6. These sample numbers are correspond-
ing to the number defined in Corollary 1.

Table 6. Logistic regression samples count

Attack Type Samples count Total samples No defense FLIP

Single-Shot Clean 10000 8843 8458
Poisoned 9020 5816 476

Continuous Clean 10000 8303 8076
Poisoned 9020 5753 442

A.5.3 Resilience to Adaptive Attacks.

As attackers may work out adaptive attacks to get over FLIP,
in this section, we design a countermeasure for attackers
and evaluate FLIP under the adaptive attack scenario. De-
tailed adaptive attack consists of the following steps: (1)
attackers apply the same trigger inversion technique as be-
nign clients to obtain the inverted triggers; (2) attackers
stamp the inverted triggers to their local images and add



them to the training phase for backdoor attacks; (3) attack-
ers submit the updated model weights to global server. We
conduct experiments on three datasets under continuous at-
tack setting. Table 7 shows the result, observe that even
under an adaptive attack setting, FLIP can still mitigate the
backdoor attacks in both MNIST and Fashion-MNIST. In
CIFAR-10, the accuracy drops and the adaptive attack is
not effective. This indicates that even though the attackers
are aware of our technique during poison training, under the
FLIP framework, benign clients can still effectively reduce
the attacker’s poisoning confidence and keep the attack suc-
cess rate in a low range.

Table 7. Adaptive attacks evaluation

Continuous ACC ASR

MNIST 96.82 0.61
Fashion-MNIST 73.42 18.94
CIFAR-10 60.08 14.02

A.5.4 Area Under the Curve (AUC).

In this section, we take MNIST as an example to show
the AUC-ROC curves (Area Under the Curve Receiver
Operating Characteristics), other datasets can be analyzed
similarly. Figure 3 shows the AUC-ROC curve of our
confidence-based sample rejection on MNIST. The curve
is plotted with TPR (True Positive Rate) against the FPR
(False Positive Rate ) where TPR is on the y-axis and FPR
is on the x-axis. In our evaluation, the AUC is 0.97. As
stated by many existing works [24], an AUC of 0.5 (in-
dicated by the orange dashed line) means the model is un-
able to discriminate positive and negative samples while an
AUC higher than 0.9 is considered outstanding. Therefore
our confidence-based rejection strategy is effective in dis-
tinguishing backdoored samples and benign samples.

A.5.5 Effect of Adversarial Training.

In this section, we aim to validate that adversarial training
in benign local clients indeed can bring positive effects in
reducing attackers’ poisoning confidence. We conduct the
experiments under continuous attacks. We use the same
threshold τ and only remove adversarial training at benign
local clients and keep all the other settings the same, e.g.
confidence threshold.

Table 8. Effect of adversarial training

Continuous ACC ASR

MNIST 96.88 51.75
Fashion-MNIST 79.68 98.53
CIFAR-10 72.90 83.13
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Figure 3. AUC-ROC Curves

In Table 8, we observe that without adversarial training,
malicious can successfully inject backdoor patterns even
with a high confidence threshold above τ . The underlying
reason is that adversarial training in benign clients hard-
ens the model against malicious samples and reduces the
confidence of malicious samples. Interestingly, we notice
MNIST ASR drops compare with no defenses, the reason
could be MNIST dataset feature is simpler, thus with a lot
of benign clients continuous training parallelly, it is easy to
forget injected backdoor patterns quickly [38], so that at-
tacker’s poisoning confidence is reduced and parts samples
are rejected. Hence, the results show that adversarial train-
ing is significantly effective in reducing the attacker’s confi-
dence in backdoor samples during backdoor training, which
is consistent with our theoretical analysis.

A.5.6 Effect of Confidence Threshold.

In this section, we demonstrate that threshold is a criti-
cal component in FLIP and we evaluate our defense with
and without thresholding, results can be found in Table 9.
We conduct thresholding experiments under continuous
backdoor attacks with three datasets. Each benign client
performs trigger inversion and adversarial training as be-
fore, while in global inference-time, we set the confidence
threshold τ to 0, which is no threshold, and keep all the
other settings unchanged. We observe that without thresh-
olding applied, though the ASRs are reduced to some ex-
tent, they are still much higher, compared with FLIP results
in Table 3. The underlying reason is adversarial training
does help in reducing the confidence of backdoored sam-
ples, however, without applying confidence threshold to re-
ject the backdoored samples, ASR keeps high. We validate
that the threshold is critical in FLIP and the observation is
consistent with our results in Corollary 1.



Table 9. Effect of confidence threshold

Continuous ACC ASR

MNIST 97.20 22.35
Fashion-MNIST 78.76 30.67
CIFAR-10 75.31 52.47

A.5.7 Other Trigger Inversion Techniques Evaluation.

In general, FLIP is compatible with any trigger inversion
technique. In this section, we use another widely-used tech-
nique ABS [20] as the trigger inversion component of our
framework. Specifically, we replace the “Trigger inver-
sion” part in Figure 1 with ABS, while keeping all other
settings the same. We conduct experiments on both single-
shot and continuous attack settings. Note that we only eval-
uate CIFAR-10, since the released version of ABS focuses
on the complex dataset with three color channels instead of
greyscale images. In each training round of local clients,
we use ABS to invert 10 most likely triggers and perform
the adversarial training.

Table 10. Other Trigger Inversion Techniques Evaluation

ABS Single-shot Continuous
ACC ASR ACC ASR

CIFAR-10 74.14 8.00 74.90 22.38

Table 10 shows the defense technique evaluation result,
which is consistent with results shown previously in Ta-
ble 2 and 3. We observe that in continuous attack, FLIP
equipped with ABS keeps higher clean accuracy 74% com-
pared to 71% in Table 3 and they both reduce ASR to a low
level, near 22%. However, in the single-shot attack, FLIP
with ABS only reduces ASR to 8%. The underlying rea-
son is that ABS inverts effective triggers within a small size
range, while the method in our main text is more aggres-
sive in hardening the model. The result demonstrates that
FLIP is generally effective with various downstream trigger
inversion techniques against backdoor attacks.

A.5.8 Impact of Trigger Size.

In this section, we study the different sizes of triggers effect
and the evaluation results in Table 11. We define the ini-
tial trigger size as X, that is, 2*X denotes the trigger size is
scaled up two times compared with the initial trigger. Take
MNIST as an example, we observe that the single-shot ASR
is low when trigger size (TS) is 1*X, the reason is each lo-
cal trigger is too small to be recognized during the global
model testing phase. We conduct an experiment consisting
of different trigger sizes from 1*X, 2*X, 4*X, 6*X, to 8*X.
The evaluation shows that our defense can significantly de-
grade ASR while maintaining comparable benign classifi-

cation performance, no matter how triggers’ sizes change.

Table 11. Trigger Size

TS No Defense FLIP
ACC ASR ACC ASR

1* X 97.58 1.48 97.09 0.14
2* X 97.57 94.31 96.94 0.29
4* X 97.24 96.41 96.05 0.13
6* X 97.33 97.64 97.23 0.76
8* X 97.46 97.85 96.83 0.45

A.5.9 Impact of Confidence Thresholds

In this section, we show the trade-off between attack suc-
cess rate and accuracy when we apply the confidence
threshold. We conduct an extensive evaluation to study dif-
ferent threshold influences on ACC and ASR. We test our
framework on MNIST dataset in the continuous attack set-
ting with three different thresholds 0.0, 0.3, and 0.7. We
found that with the increase of confidence threshold, ACC is
97.2%, 96.62%, and 88.86% accordingly, in the meantime,
the ASR is 22.35%, 1.93%, and 0.91% accordingly. We
observe that benign local model hardening has controllable
negative effects on accuracy. Meanwhile, there is a trade-
off between adversarial training accuracy and standard ac-
curacy of a model [36]. If we aim for a much lower attack
success rate, this will sacrifice part of clean accuracy. In
other words, when we set a higher threshold, ASR indeed
decreases, in the meantime, some low-confidence benign
samples are also rejected, which causes the benign accuracy
to reduce to some extent.

A.5.10 Discussion on Other Defenses.

In this section, we provide additional experimental results
on the comparison between the Multi-KRUM [3] and our
method. We take the CIFAR-10 dataset as an example, in
the single-shot attack, Multi-KRUM can drop ASR from
80.46% to 4.18%, and our defense ASR is 7.83%. How-
ever, in the continuous attack, Multi-KRUM can only re-
duce ASR from 84.73% to 61.86%, and our defense ASR
is 17.27%, the ACC is at a similar level. Our technique can
achieve comparative performance with Multi-KRUM in the
single-shot attack and outperforms Multi-KRUM in more
complex attack scenarios of continuous attack. In addition,
we also try to evaluate FLAME [28]. We contacted the au-
thors of FLAME several times for their experiments and pa-
rameters setup but got no response until submission.



A.5.11 Justifications for SOTA Defenses not Working.

In this section, we provide concrete justifications on why
SOTA defenses produce a nearly 100% attack success rate
on continuous attacks setting. Continuous backdoor attacks
denote that in each round the attackers will be selected and
continuously participate in federated learning. We suspect
there are three reasons that SOTA defenses are performing
not well on continuous attacks. First, continuous backdoor
attacks are more aggressive. In each round of selected par-
ticipants, 40% of them are attackers and will participate
in every round of model training. Second, as mentioned
in [38], even under a very low attack frequency, the attacker
still manages to gradually inject the backdoor as long as
federated learning runs for long enough. Third, some of
their assumptions, e.g. though FoolsGold [10] assumes that
benign data are non-iid, meanwhile, it also assumes manip-
ulated data are iid, this could cause FoolsGold to be only
effective under certain simpler attack scenarios, e.g. single-
shot attacks.

A.6. Conclusion

We presented a new provable defense framework for
backdoor mitigation in Federated Learning (FLIP) and a
novel trigger inversion technique under FL. The key insight
is to combine trigger inversion techniques with FLIP, as
long as the reversed trigger satisfies our given bound, then
we can guarantee attack success rate will decrease and in the
meantime the model can maintain similar accuracy on clean
data. Our technique significantly outperforms prior work on
the SOTA continuous FL backdoor attack. Our framework
is general and can be instantiated with any trigger inversion
technique. While applying various trigger inversion tech-
niques, FLIP may have slight accuracy degradation, but it
can significantly boost the robustness against backdoor at-
tacks.
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