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Abstract
Despite the recent advances in out-of-distribution(OOD)

detection, anomaly detection, and uncertainty estimation
tasks, there do not exist a task-agnostic and post-hoc ap-
proach. To address this limitation, we design a novel
clustering-based ensembling method, called Task Agnostic
and Post-hoc Unseen Distribution Detection (TAPUDD)
that utilizes the features extracted from the model trained
on a specific task. Explicitly, it comprises of TAP-
Mahalanobis, which clusters the training datasets’ features
and determines the minimum Mahalanobis distance of the
test sample from all clusters. Further, we propose the En-
sembling module that aggregates the computation of itera-
tive TAP-Mahalanobis for a different number of clusters to
provide reliable and efficient cluster computation. Through
extensive experiments on real-world datasets, we observe
that our task-agnostic approach can detect unseen samples
effectively across diverse tasks and performs better or on-
par with the existing task-specific baselines.

1. Introduction
Deep neural networks have achieved phenomenal per-

formance in diverse domains such as computer vision and
healthcare [3,10,32]. However, they struggle to handle sam-
ples from an unseen distribution, leading to unreliable pre-
dictions and fatal errors in safety-critical applications. In an
ideal situation, a robust model should be capable of making
predictions on samples from the learned distributions, and
at the same time, flag unknown inputs from unfamiliar dis-
tributions so that humans can make a responsible decision.
For instance, in safety-critical tasks such as cancer detec-
tion, the machine learning assistant must issue a warning
and hand over the control to the doctors when it detects an
unusual sample that it has never seen during training. Thus,
in practice, it is important for a model to know when not
to predict. This task of detecting samples from an unseen
distribution is referred to as out-of-distribution (OOD) de-
tection [5, 17, 18, 21, 24, 26, 27, 31, 41, 47].

Most of these OOD detection methods mainly focusing

on classification tasks have shown great success. However,
they are not directly applicable to other tasks like regres-
sion. Although a few bayesian and non-bayesian techniques
[11,14,23,30] estimate uncertainty in regression tasks, they
are not post-hoc as it often requires a modification to the
training pipeline, or multiple trained copies of the model, or
training a model with an optimal dropout rate. This raises
an under-explored question:

Can we design a task-agnostic, and post-hoc ap-
proach for unseen distribution detection ?

Motivated by this, we propose a novel clustering-
based ensembling framework, “Task Agnostic and Post-hoc
Unseen Distribution Detection (TAPUDD)”, which com-
prises of two modules, TAP-Mahalanobis and Ensembling.
TAP-Mahalanobis partitions the training datasets’ features
into clusters and then determines the minimum Maha-
lanobis distance of a test sample from all the clusters. The
Ensembling module aggregates the outputs obtained from
TAP-Mahalanobis iteratively for a different number of clus-
ters. It enhances reliability and eliminates the need to deter-
mine an optimal number of clusters. As TAPUDD is a post-
hoc approach and doesn’t require training the model, it is
more efficient and easy to deploy in real-world. We demon-
strate the efficacy of our approach by extensively evaluating
it on synthetic and real-world datasets for diverse tasks.

2. Related Work

Out-of-distribution Detection. Recent works have in-
troduced reconstruction-error based [7, 8, 37, 38, 40, 48],
density-based [6,9,13,31,34,39,42], and self-supervised [1,
12, 19, 41] OOD detection methods. Other efforts include
post-hoc methods [5,17,18,24,26,27,33] that do not require
modification to the training procedure. However, there is no
approach that is post-hoc and does not require the class la-
bel information of the training data.
Uncertainty Estimation. Research in this direction pri-
marily estimates the uncertainty to enhance the robustness
of networks in regression tasks. Well-known methods to
estimate uncertainty include bayesian [2, 14, 16, 22, 25, 28–
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Figure 1. TAPUDD. Our method first extracts the features of an input image x from the feature extractor f of a model trained on a specific
task. TAP-Mahalanobis module then uses the extracted features f(xtrain) to fit the gaussian mixture model and computes the minimum
mahalanobis distance Sk for the given feature vector f(xtest). Further, the Ensembling module aggregates the mahalanobis distance (Sk1

to Skn) obtained from iterative computation of TAP-Mahalanobis for different number of clusters (k1 to kn) to enhance the reliability.

30, 35, 43, 46] and non-bayesian [11, 23] approaches, which
have shown remarkable success. However, they require
significant modification to the training pipeline, multiple
trained copies of the model, and are not post-hoc.
Anomaly Detection. This task aims to detect anoma-
lous samples shifted from the defined normality. Prior
work [4, 8, 12, 37, 40, 45, 48] proposed methods to solve
anomaly detection. However, more recently, [1, 20, 41, 44]
proposed a unified method to solve both OOD detection
and anomaly detection. Nonetheless, these methods require
end-to-end training and are not post-hoc.

There exist no unified approach to enhance the reliability
of neural networks across distinct tasks like classification,
regression, etc. In contrast to all the aforementioned efforts,
our work presents a post-hoc, and task-agnostic approach to
detect unknown samples across varied tasks.

3. TAPUDD: Task Agnostic and Post-hoc Un-
seen Distribution Detection

We propose a novel, Task Agnostic and Post-hoc
Unseen Distribution Detection (TAPUDD) method, as
shown in Fig. 1. The method comprises of two main
modules TAP-Mahalanobis and Ensembling.

TAP-Mahalanobis. Given training samples X =
{x1, ...,xN}, we extract the features of the in-distribution
data from a model trained for a specific task using a fea-
ture extractor f . We then pass these features to the TAP-
Mahalanobis module. It first partition the features of the

in-distribution data into K clusters using Gaussian Mixture
Model (GMM) with “full” covariance. Then, we model the
features in each cluster independently as multivariate gaus-
sian and compute the empirical cluster mean and covari-
ance of training samples X = {x1, ...,xN} and their corre-
sponding cluster labels C = {c1, ..., cN} as:
µc =

1
Nc

∑
i:ci=c f(xi),Σc =

1
Nc

∑
i:ci=c(f(xi)− µc)(f(xi)− µc)

T ,

where f(xi) denotes the penultimate layer features of an
input sample xi from a cluster ci.

Then, given a test sample, xtest, we obtain the negative
of the minimum of the Mahalanobis distance from the cen-
ter of the clusters as follows:
STAP-Mahalanobis = −min

c
(f(xtest)− µc)

TΣ−1
c (f(xtest)− µc),

where f(xtest) denotes the penultimate layer features of a
test sample xtest. We then use the score STAP-Mahalanobis to
distinguish between ID and OOD samples. To align with
the conventional notion of having high score for ID samples
and low score for OOD samples, negative sign is applied.

However, it is not straightforward to determine the
number of clusters K for which the OOD detection perfor-
mance of TAP-Mahalanobis is optimal for different tasks
and datasets. Therefore, we present an Ensembling module.

Ensembling. This module not only eliminates the need
to determine the optimal value of K but also provides more
reliable results. We obtain TAP-Mahalanobis scores for dif-
ferent values of K ∈ [k1, k2, k3, ..., kn] and average them
to obtain an ensembled score, SEnsemble. This ensures that a
sample is detected as OOD only if a majority of the partici-
pants in ensembling agrees with each other.



Brightness Baselines Ours (Task-Agnostic)

MSP [18] ODIN [26] Energy [27] MB [24] KL [17] MOS [21] Gram [5] TAP-MB TAPUDD
(K = 8) (K = 8) (Average)

0.0 88.7±4.8 88.7±4.8 88.2±5.3 99.9±0.1 26.3±32.8 89.3±5.5 99.3±1.4 99.9±0.1 100.0±0.1

0.2 66.1±3.5 66.1±3.5 66.0±3.7 87.5±4.5 44.5±3 65.9±3.2 61.0±3.3 86.8±4.7 87.3±5.2

0.4 56.3±1.4 56.4±1.4 56.2±1.7 70.5±3.8 46.9±1.2 56.4±1.1 53.4±1.1 69.6±3.7 70.1±4.5

0.6 52.4±0.8 52.4±0.8 52.3±0.9 59.9±2.5 48.2±1 52.5±0.8 51.4±0.5 59.3±2.5 59.4±2.7

0.8 50.4±0.4 50.4±0.4 50.4±0.4 52.2±1.4 48.8±0.6 50.5±0.3 50.2±0.5 52.0±1.7 52.0±1.6

1.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0

1.2 51.7±0.4 51.7±0.4 51.7±0.4 55.4±1.6 49.2±0.5 51.7±0.5 51.1±0.6 56.1±1.5 56.0±1.5

1.4 55.8±0.8 55.8±0.8 55.8±0.8 62.9±2.1 48.2±1.2 55.8±0.8 53.6±1.1 63.7±2.0 63.5±2.1

1.6 59.7±1.3 59.7±1.3 59.8±1.4 70.2±2.7 47.5±1.7 59.6±1.1 55.9±1.2 70.9±2.8 70.7±2.9

1.8 63.1±2.0 63.1±2.1 63.2±2.2 76.5±2.9 48.3±2.4 62.8±1.7 58.1±1.5 76.9±3.4 76.6±3.5

2.0 65.5±3.2 65.6±3.2 65.7±3.5 81.6±2.7 49.8±2.9 65.1±2.6 60.5±1.8 81.8±3.7 81.4±3.8

2.5 69.5±6.5 69.5±6.5 69.6±6.8 90.4±2.5 51.6±4.9 69.0±5.5 65.4±4.4 89.9±3.8 89.6±4.1

3.0 72.5±8.7 72.5±8.7 72.6±9.0 94.8±1.8 51.3±5.4 72.0±7.6 69.6±5.9 93.9±3.8 93.6±4.0

3.5 73.7±9.7 73.7±9.7 73.6±10 96.8±1.3 52.0±6.1 73.0±8.8 72.2±6.8 95.5±3.8 95.4±3.7

4.0 75.8±9.5 75.8±9.5 75.7±9.8 97.8±0.8 50.5±7.2 75.3±8.8 75.1±7.9 96.5±3.6 96.5±3.2

4.5 78.1±7.9 78.1±7.9 78.0±8.3 98.5±0.5 47.4±8.2 77.8±7.5 78.0±7.1 97.3±3.0 97.4±2.4

5.0 79.9±6.4 79.9±6.4 79.8±6.9 98.8±0.4 44.9±8.4 79.8±6.1 80.4±6.6 97.9±2.5 98.0±1.7

5.5 81.4±5.6 81.4±5.6 81.3±6.2 99.0±0.4 44.1±8.7 81.3±5.4 82.4±6.6 98.2±2.2 98.4±1.2

6.0 82.5±5.1 82.5±5.1 82.5±5.6 99.1±0.4 43.6±8.6 82.4±4.9 83.9±6.3 98.5±1.9 98.7±0.9

6.5 83.2±4.9 83.2±4.9 83.2±5.4 99.2±0.4 44.3±8.2 83.1±4.6 85.0±6.2 98.7±1.7 98.9±0.7

Average 67.8 67.8 67.8 82.1 46.9 67.7 66.8 81.7 82.0

Table 1. NAS detection performance in binary classification task for NAS shift of brightness in RSNA boneage dataset measured by AU-
ROC. Highlighted row presents the performance on ID data. MB and TAP-MB refers to Mahalanobis and TAP-Mahalanobis, respectively.
Our task-agnostic approach significantly outperforms all baselines (except MB) and is comparable to MB. Note that MB is task-specific
and cannot be used in tasks other than classification.

Remark. GMM is more flexible in learning the cluster
shape in contrast to K-means, which learns spherical clus-
ter shapes. Consequently, K-means performs poorly when
detecting OOD samples near the cluster. Other popular
clustering methods such as agglomerative clustering or DB-
SCAN are less compatible with Mahalanobis distance and
require careful hyperparameter adjustment, such as the link-
ing strategies for agglomerative clustering or the epsilon
value for DBSCAN.

4. Experiments and Results
In this section, we validate TAPUDD by conducting ex-

periments on 2-D synthetic dataset (Sec. 4.1). To further
bolster the effectiveness of our method, we present empir-
ical evidence to validate TAPUDD on several real-world
tasks, including binary classification (Sec. 4.2), and regres-
sion (Sec. 4.3). For real-world tasks, we evaluate on Natural
Attribute-based Shift (NAS) detection dataset [36]. In NAS
detection, a sample is shifted from the training distribution
based on attributes like brightness, age, etc.

4.1. Evaluation on Synthetic Datasets

Experimental Details. We generate synthetic datasets in
R2 for multi-class classification task. The in-distribution
(ID) data x ∈ X = R2 is sampled from a Gaussian mixture
model. All the samples except the ID samples in the 2-D
plane represent the OOD samples. We consider the 2-D
sample as the penultimate layer features on which we can
directly apply OOD detection methods like TAPUDD.
TAPUDD outperforms TAP-Mahalanobis. We present

TAP-Mahalanobis TAPUDD
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K=1 K=2 K=3 K=4 Average
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Figure 2. ID score landscape of TAP-Mahalanobis for different
values of K (i.e., number of clusters); and TAPUDD on synthetic
2D multi-class classification dataset. A sample is deemed as OOD
when it has a low ID score. The Pink Points represent the in-
distribution data. Results demonstrate that TAP-Mahalanobis does
not perform well for some values of K whereas TAPUDD perform
better or on-par with TAP-Mahalanobis.

a comparison to demonstrate the effectiveness of TAPUDD
against TAP-Mahalanobis in Fig. 2. We present the ID score
landscape of TAP-Mahalanobis for different values of K
and TAPUDD for multi-class classification in a 2-D syn-
thetic dataset. The Pink Points represent the ID data. We
observe that for certain values of K, TAP-Mahalanobis fails
to detect some OOD samples. However, TAPUDD effec-
tively detect OOD samples and performs better, or on par,
with TAP-Mahalanobis. Thus, TAPUDD eliminates the ne-
cessity of choosing the optimal value of K.

4.2. NAS Detection in Binary Classification

Experimental Details. We use the RSNA Bone Age
dataset [15], composed of left-hand X-ray images of the pa-
tient and their gender and age (0 to 20 years). We alter the
brightness of the X-ray images by a factor between 0 and



6.5 and form 20 different NAS datasets to reflect the X-ray
imaging set-ups in different hospitals following [36]. In-
distribution (ID) data consists of images with a brightness
factor 1.0. We trained a ResNet18 model using the cross-
entropy loss and assessed it on the ID test set composed of
images with a brightness factor of 1.0. Further, we evaluate
the NAS detection performance of our method and compare
it with representative task-specific OOD detection methods
on NAS datasets. For NAS detection, we measure the area
under the receiver operating characteristic curve (AUROC),
a commonly used metric for OOD detection.
Results. The ID classification accuracy averaged across
10 seeds of the gender classifier trained using cross-entropy
loss is 91.60. We compare the NAS detection performance
of our proposed approach with competitive post-hoc OOD
detection methods in literature in Tab. 1. As expected,
the NAS detection performance of our approach and all
baselines except KL Matching increase as the shift in the
brightness attribute increases. We also observe that our ap-
proaches, TAPUDD and TAP-Mahalanobis are more sen-
sitive to NAS samples compared to competitive baselines,
including Maximum Softmax Probability [18], ODIN [26],
Mahalanobis distance [24], energy score [27], Gram matri-
ces [5], MOS [21], and KL matching [17]. All these task-
specific baselines require the label information of the train-
ing dataset for OOD detection and cannot be used directly
in tasks other than classification. In contrast, our proposed
task-agnostic approach does not require the access to class
label information and it can be used across different tasks.

4.3. NAS Detection in Regression

Experimental Details. We use the RSNA Bone Age
dataset (described in Sec. 4.2) and solve the age predic-
tion task. In this task, the objective is to automatically pre-
dict the patient’s age given a hand X-ray image as an input.
As described in Sec. 4.2, we vary the brightness and form
20 different NAS datasets. In-distribution (ID) data com-
prises images of brightness factor 1.0 (unmodified images).
We train a ResNet18 with MSE loss and evaluate it on the
test set composed of images with a brightness factor 1.0.
Further, we evaluate the NAS detection performance of our
proposed method and compare its performance with repre-
sentative bayesian and non-bayesian uncertainty estimation
methods on NAS datasets with attribute shift of brightness.
Results. The in-distribution Mean Absolute Error (MAE)
in year averaged across 10 seeds of the Resnet18 model
trained using MSE loss is 0.801. We compare the NAS
detection performance of our proposed approach with well-
known uncertainty estimation methods, namely Deep En-
semble (DE) [23], Monte Carlo Dropout (MCD) [11], and
SWAG [30]. Although DE, MCD, and SWAG are not ap-
plicable to a pre-trained model, we compare against these
baselines as a benchmark, as it has shown strong OOD de-

Brightness Baselines Ours (Task-Agnostic)

DE [23] MCD [11] SWAG∗ [30] TAP-MB TAPUDD
(K = 8) (Average)

0.0 100.0±NA 6.9±NA 99.9±NA 100.0±0.1 100.0±0.0
0.2 57.0±NA 45.5±NA 51.4±NA 87.9±6.1 88.8±6.7
0.4 51.3±NA 50.8±NA 49.8±NA 64.5±6.9 66.6±5.0
0.6 50.7±NA 49.7±NA 49.5±NA 54.6±4.4 55.1±2.5
0.8 50.5±NA 49.9±NA 49.7±NA 48.9±1.7 49.2±1.0
1.0 50.0±NA 49.8±NA 50.0±NA 50.0±0.0 50.0±0.0
1.2 50.3±NA 48.5±NA 50.8±NA 57.6±1.8 57.8±1.9
1.4 54.5±NA 46.7±NA 55.8±NA 68.4±3.4 68.4±3.4
1.6 58.6±NA 44.5±NA 63.5±NA 78.7±3.6 78.6±3.7
1.8 64.9±NA 41.6±NA 71.6±NA 86.4±3.5 86.3±3.6
2.0 75.8±NA 38.4±NA 79.3±NA 91.9±3.0 91.7±3.2
2.5 95.6±NA 31.1±NA 89.8±NA 97.5±1.5 97.4±1.4
3.0 98.4±NA 25.8±NA 90.7±NA 99.0±0.6 99.0±0.5
3.5 99.3±NA 21.7±NA 93.7±NA 99.4±0.3 99.4±0.3
4.0 99.8±NA 18.0±NA 96.4±NA 99.6±0.3 99.6±0.2
4.5 100.0±NA 14.9±NA 97.4±NA 99.7±0.2 99.7±0.1
5.0 100.0±NA 11.7±NA 98.1±NA 99.8±0.1 99.7±0.1
5.5 100.0±NA 9.7±NA 98.5±NA 99.8±0.1 99.8±0.2
6.0 100.0±NA 7.9±NA 98.7±NA 99.8±0.1 99.8±0.2
6.5 100.0±NA 7.0±NA 98.9±NA 99.8±0.2 99.8±0.3

Average 77.8 31.0 76.7 84.2 84.3

Table 2. NAS detection performance in regression task (age pre-
diction) for NAS shift of brightness in RSNA boneage dataset
measured by AUROC. Highlighted row presents the performance
on the ID dataset. DE, MCD, TAP-MB, and NA denotes Deep
Ensemble, Monte Carlo Dropout, TAP-Mahalanobis, and Not Ap-
plicable respectively. SWAG∗ = SWAG + Deep Ensemble.

tection performance across regression examples. For DE,
we retrain 10 models of the same architecture using MSE
loss from different initializations. Since SWAG is not di-
rectly applicable for OOD detection, we apply SWAG∗

which is a combination of deep ensembling on top of
SWAG. From Tab. 2, as expected, we observe that the NAS
detection performance of our approach and all baselines in-
crease as the shift in the brightness attribute increases. We
also observe that our proposed approaches, TAPUDD and
TAP-Mahalanobis, are more sensitive to NAS samples and
effectively detect them compared to the baselines.

5. Conclusion
In this work, we propose a task-agnostic and post-hoc

approach, TAPUDD, to detect samples from the unseen
distribution. TAPUDD is a clustering-based ensembling
approach composed of TAP-Mahalanobis and Ensembling
modules. TAP-Mahalanobis module groups the semanti-
cally similar training samples into clusters and determines
the minimum Mahalanobis distance of the test sample from
the clusters. To enhance reliability and to eliminate the
necessity to determine the optimal number of clusters for
TAP-Mahalanobis, the Ensembling module aggregates the
distances obtained from the TAP-Mahalanobis module for
different values of clusters. We validate the effectiveness of
our approach by conducting extensive experiments on di-
verse datasets and tasks. As future work, it would be in-
teresting to extensively evaluate TAPUDD to detect unseen
samples in text, 3D vision, and healthcare.
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